CHEOPS 2023

Next-Gen Cloud Storage:
Leveraging DPUs to Virtualize File
System Serxrvices

—

IBM Research

®

How to consume FS services in a Cloud?

Cloud server Client server Bare metal server

C C f C
[Service]J Container [App]J

|1

Distributed Filesystem Cluster

EEEEEEEE

Efficiency

Performance Overhead Multi- Suppor.t all Client Operator Attack Network
tenancy cloud clients

transparency control surface isolation
CHEOPS'23

II
e

DPU-Powered File System Virtualization

Cloud server

(

[Service

)

Client server

4 4
[Container]J[VM]_]

- =

S4dd

4

Bare metal server

[w)

DPU

Sidd

AV

oru [

S4dd

7

Distributed Filesystem Cluster

EEEEBEBEEE

ﬂ;s‘A

DPFS

Effciency

Multi- Support all Client Operator Attack Network
Performance Overhead :
tenancy cloud clients transparency control surface isolation

CHEOPS'23

Option 1: Traditional Distributed File

System client

Cloud server Client server Bare metal server
(C C r
[Service]J [Container [VM App]_]
| DFS Client DFS Client
| DFS Client |

Poor resource utilization

Installed, configured
217 CllE:] P and mamtalne% by

v \/ o

/ z ol |20 Z 5 z ol |z o Poor isolation & security
o (@) (@] o o
o m Q m o n o mn Q mn
o v o v o v & v 2 »n

Distributed Filesystem Cluster

SIEISEES]

Examples: Spectrum Scale, CephFS, etc.

Effciency

CHEOPS'23

Option 2: NFS gateway for Cloud File Systems

Cloud server Client server
C (C
[Service]J [Container [VM
NFSChent NFSChent
| NFS Client

Bare metal server

(
[Service 1}

: Installed, configured
[IFSdE: P and malntalne%b

\\//\ tenant

/ NFS Gateway

Hard to innovate DES Client

(standardized) /N

Needs network access

-

9poN
S4d
9PON
S4d
apoN
S4d
9PON
S4d

9PON
S4d

Slightly better isolated

Distributed Filesystem Cluster

SIEISEIES]

Efficiency

CHEOPS'23

7]
-1l||
e
°

]
Il
.

The DPU-powered Cloud

s o\ * Also known as SmartNIC or Infrastrucure Processing
CPU Bare metal Unit (IPU)
VM Container « “A NIC with compute and offload capabilities baked in”
—————————— @ « We focus on DPUs with a CPU
Hypervisor ‘
_ /
Security isolation

< ——
Offloading using DPUS:

ARM Linux V Block storage devices (NVMe and virtio-blk)
v Networking (virtio-net & programmable switch)
& >/ X File systems “DPFS” to fill the gap

CHEOPS'23

Option 3: Remote Block Storage

®

Cloud server Virtual server Bare metal server

((((
[Service]_] [Container]J[VM]_] [Service

]

DPU

DPU

NVMe-OF

4 N

SIEIEISIEE]

Distributed Block Cluster

9poN
A20|9
9PON
Ado0|d
SPON
A20|9
3poN
A20|9
9PON
Ad0|g

_ No multi-tenancy

Ak write extd extd + NVMe-oF XFS Btrfs
I/O operations 5.2 13.7 3 46
Total Bytes (in KiB) 44.7 46.8 12 125.3
Amplification 11.2x 11.7x 3x 16x

Effciency

CHEOPS'23

The high-level FSvirtualization stack

(Host Application Userspacew

* No configuration VES Kernelspace .
Virtio-fs = 13k LoC
 Works on bare metal FUSE VS
Virtio-fs (NFS+TCP/IP) =181k LoC

 Transparent consumption
of any FS Virtio-fs over PCle

. Multi-tenancy (SR-IOV)

ARM Linux Userspace

DPU library
DPFS
{ Remote File System Server }

Efficiency Management Security
Multi- Support all Client Operator Attack Network
BN Performance Overhead . .)
SES tenancy cloud clients transparency control surface isolation 8

Maximum flexibility and
full control for hardware

specialization e

Tenant completely isolated
from FS client and network

Il
Il
e

]
Il
.

Challenges that DPFS solves

/HOS'E Application Userspace\

3 Vendors:
i
Kernelspace *
VFS
<A |2
_ Virtio-fs Y NVIDIA.
T Virtio-fs over PCle
e
DPU | 3; erspace .
Not standardized
DPU library
File System

Raw virtio-fs is hard
v to port to

@ Unknown performance | = _
and design space

{ Remote File System Server } Example DFS client

iImplementations

—

OMONNGC

Kick-start open research and adoption!
CHEOPS' 23 9

The DPFS framework: DPU-Powered File Systems A -
N N
DPFS

Architecture: —_—
@ Hardware Abstraction Layer Application 1
(2) FUSE API 1
@ Several backends .FU.S?

k Virtio-fs /

virtio-fs over PCle

/DPU Virtio queues \

ARM Linux Userspace polling

DPU library

HAL
FUSE
Backends

CHEOPS'23 10

||
"I"I”
W
liy |l
I
)
b

The DPFS framework: DPU-Powered File Systems

Architecture:
@ Hardware Abstraction Layer

(2) FUSE API

@ Several backends

Vendors:

< | .

NVIDIA.

CHEOPS'23

/qust Userspagg\

Application

Kernel

VFS

FUSE

Virtio-fs 4‘///

virtio-fs over PCle

DPU library

HAL

FUSE

Backends

N N
DPFS

11

The DPFS framework: DPU-Powered File Systems A -
N N
DPFS

Architecture: Y ra—
@ Hardware Abstraction Layer Application 1
(2) FUSE API 1
@ Several backends FUSE

K Virtio-fs /

virtio-fs over PCle

H libfuse / libfuse ' Public

The reference implementation of the Linux FUSE
(Filesystem in Userspace) interface

&8 View license DPU library
Y 4.4k stars % 993 forks HAL

FUSE
Backends

Starred (& Watch ~

API ~equal, but no multithreading yet

CHEOPS'23 12

]
Il
.

The DPFS framework: DPU-Powered File Systems A -
o, AANGA

Application
Architecture: [Kemel DPFS
VFS
@ Hardware Abstraction Layer FUSE
(2) FUSE API \ ek
virtio-fs over PCle

Several backends:|NFS / \
DPU

AN P,

H sahlberg/libnfs Public DPU library
NFS client library HAL
FUSE
58 Unknown and 2 other licenses found
Backends

¥y 413 stars % 182 forks

NFS
Starred & Watch ~ \ /

Partial|TCP offloaded sockets (Nvidia XLIO)

Userspace NFS v4.1
CHEOPS'23 [

R‘emote NFS Server] 13

]
Il
.

The DPFS framework: DPU-Powered File Systems =

Architecture:

@ Hardware Abstraction Layer

(2) FUSE API

Several backends: NFS, KV

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

The Case fo* RAMClouds:

Scalable High-Performance Storage Entirely in DRAM

John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich, David Mazi¢res,
Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and

Ryan Stutsman

Department of Computer Science

Stanford University

(Host

Userspaa EA‘A

Application D P F S
! Kernel
VFS
FUSE
k Virtio-fs /

virtio-fs over PCle
y

/ opU

AN P,

O

DPU library

pdce po 0

HAL

FUSE

Backends

]
Il
.

Optimized for 4k I/O and low latency

Flat hierarchy

PS'23

&

NFS KV

y

[Remote RAMCloud cluster] 14

The DPFS framework: DPU-Powered File Systems =

Architecture:
@ Hardware Abstraction Layer

(2) FUSE API

(3c) Several backends: NFS, KV,[NULL

latency and throughput

Evaluates raw DPU performance:

BlueField 2 vs BlueField 3 (soon)

]
Il
.

CHEOPS'23

mOSt

. 2A\0a

Application D P F S

i Kernel

VFS

FUSE

k Virtio-fs /

virtio-fs over PCle

/ opU

Userspace polling

ARM Linux

DPU library

HAL

FUSE

Backends

KV

Instantly returns any operation

15

Experimental evaluation

* Q1: Baseline performance when using a DPU (NULL)

* Q2: Throughput of DPFS-NFS (compared to Host NFS)

e Q3: Latency improvements with specialization (DPFS-NFS & -KV)
* Q4: Host CPU overhead analysis

CHEOPS' 23

DA 02
DPFS

16

Experimental setup

Host setup:

o 2Xx Intel Xeon E5-2630v3, 2.2GHz, 8 cores/socket

« 128GIiB DDR4 1600

* Clean Ubuntu 22.04 (Linux 6.2) and fio 3.28

* NFS with optimized settings per Google Cloud (does more caching than DPFS)
DPU:

* Nvidia BlueField-2

8x A72 ARM cores (running Ubuntu 20.04 Linux)

« 16GB single-channel DDR4

« 100Gb/s ConnectX-6 network interface

* Exposes a single virtio-fs device to a single bare metal host

Q1: Baseline DPFS performance (NULL)

7 .
—— Read = == =
DPU setup: 6] ——— Write
« 1024 queue depth on the DPU _ — 4k
i <L 5] 16k
« Single core 5 ° S i A <
6 — 064k ’,;z”'—
_ : 4 - ;r:/’
Max TP = 7GB/s read and 5GB/s write 2
N
Large block sizes preferred S 31
o
=2
Read latency = 38.6ps
: ~40|.|S 1 -
Write latency =43.3us 7| | = et =
° 2 : 4 8 16 32 64 128
Slow Arm A72 core fully saturated 1/O depth

Il
.

CHEOPS' 23 18

Il
.

Q2: DPFS-NFS evaluation

Random 4k Queue full
250 1
—~_~~ 200'
£ - £ 1
2 | - -----F----- +----- 1
‘2“ 150
4
=
o,
=
2100
o
ﬁ —— Read
50 1 -== Write
—— Host NFS
DPFS-NFS
0

2 4 8 16 32 64 128

I/0 depth

Bottleneck = TCP NFS I/O

Random 32k Queue full
1200+ —— Read
=== Write
10001 —— Host NFS
2 s
& DPFS-NF
S 8001
g F
o
&8 600- s
@) ’
=) P/
S
5 400
=
200 A
0

1 2 4 8 16 32 64 128
I/0 depth

Bottleneck = Limited queue depth (XLIO)
XLIO Read path bad with large BS & QD>=4

CHEOPS' 23

19

Random 4k, QD=1

140+ I Read 1 Write

120 -

100 -

Latency (us)
B O
o o o

(N
)

O _
Host NFS DPFS-NFS DPFS-NFS DPFS-KV
(+XLIO) (-XLIO)

Configuration

CHEOPS'23

|1
®

Q3: Latency evaluation

Hardware specialization is key
(e.g. TCP offloading or RDMA)

l . Baseline DPFS-NULL latency

20

Q4: Evaluation CPU savings

Hypothesis:

Virtio-fs much lighter than NFS, so we
expect big CPU savings.
(13k LoC vs 181k LoC)

Test setup:

« System-wide (kernel only) performance
counters to account for RX path

« Take a 300s baseline, then perform a
300s stress test. Subtract the baseline
from the stress test to only leave the
instructions used for I/0.

4 KiB 50/50 read/write workload

Il
.

NFS DPFS-NFS +/-
Instructions/op 88,453 32,907 -62.80%
IPC 0.57 +64.21%
Branch miss rate 2.02 -47.42%
L1 dCache miss rate 8.82 -56.65%
dTLB miss rate 0.14 +7.14%
Savings in CPU cycles/op
CHEOPS ' 23 21

Conclusions

* DPFS: a DPU-Powered File System Virtualization framework
* Designed to meet the cloud FS needs of efficiency, management & security

« 4.4x host cycle savings and similar performance to NFS
* Multiple backends: NFS, NULL and KV

More i1nfo about the project at:

github.com/IBM/DPFS

CHEOPS' 23

22

https://github.com/IBM/DPFS

Future work for DPFS

« Performance optimizations
 [0_uring file system backend for DPFS (DPU-local mirror)
» Thread pooling in DPFS
« Multi-queue support in virtio-fs and DPFS
 Transition to faster DPUs (i.e., Nvidia BlueField-3)

* Multi-tenancy performance evaluation
 New RPC-based Virtio-fs backend

« Split metadata and data paths, cut network hops and memory copies for data path

.|||i

Thank you!

Info and contact about the project:

github.com/IBM/DPFS

A\.A Paper accepted at SYSTOR 2023!
DPFS (available 1st week of June)

IBM, the IBM logo, and [other IBM trademark listed on the IBM Trademarks List] are trademarks or registered trademarks of IBM Corp., in the U.S. and/or other countries

Google is a registered trademarks of Google LLC, in the U.S. and/or other countries.
Amazon is a registered trademarks of Amazon.com Inc., in the U.S. and/or other countries.
Azure is a registered trademarks of Microsoft Corp., in the U.S. and/or other countries.
ARM is a registered trademarks of Arm Ltd., in the U.S. and/or other countries.

24

https://github.com/IBM/DPFS

